轉載文章

NLLB-200 translates 200 different languages with accurate results

15/7/22
Source:
Dataconomy

The new Meta AI model called NLLB-200 can translate 200 languages and improves quality by 44 percent on average, and has demonstrated tremendous potential.The most widely used languages have been covered by translation applications for a while. Even if they don’t provide an exact translation, it’s typically close enough for the native speaker to comprehend.

NLLB-200 TRANSLATES 200 DIFFERENT LANGUAGES WITH ACCURATE RESULTS

However, there remain hundreds of millions of people who continue to experience lousy translation services in areas with numerous languages, such as Africa and Asia.“To help people connect better today and be part of the metaverse of tomorrow, our AI researchers created No Language Left Behind (NLLB), an effort to develop high-quality machine translation capabilities for most of the world’s languages,” Meta stated in a press release. “Today, we’re announcing an important breakthrough in NLLB: We’ve built a single AI model called NLLB-200, which translates 200 different languages with results far more accurate than what previous technology could accomplish.”The metaverse strives to have no boundaries. Translation services will need to provide correct translations fast in order to make that possible. Also, did you know Google AI Pathways Language Model can explain a joke?NLLB-200 reportedly achieved a 44 percent higher “quality” translation score.“As the metaverse begins to take shape, the ability to build technologies that work well in a wider range of languages will help to democratize access to immersive experiences in virtual worlds,” the company explained.In comparison to earlier AI research, NLLB-200 reportedly achieved a 44 percent higher “quality” translation score. The translations produced by NLLB-200 were more precise than human translations for some languages with African and Indian roots.

HOW META AI ACHIEVED THESE RESULTS?

Most machine translation (MT) models available today only function with mid-to-high-resource languages, leaving the majority of low-resource languages behind. Meta AI researchers are creating three important AI developments to overcome this problem.NLLB-200 were more precise than human translations for some languages with African and Indian roots.To assess and enhance NLLB-200, Meta produced a dataset dubbed FLORES-200. Researchers can evaluate FLORES-200’s performance “in 40,000 different language directions” thanks to the dataset.Developers are welcome to contribute to both NLLB-200 and FLORES-200 in order to expand on Meta’s work and enhance their own translation tools.For academics and nonprofit organizations that want to use NLLB-200 for worthwhile purposes related to sustainability, food security, gender-based violence, education, or other areas that support UN Sustainable Development Goals, Meta has a pool of grants totaling up to $200,000.But not everyone is quite sold on Meta’s most recent project.“It’s worth bearing in mind, despite the hype, that these models are not the cure-all that they may first appear. The models that Meta uses are massive, unwieldy beasts. So, when you get into the minutiae of individualized use-cases, they can easily find themselves out of their depth – overgeneralized and incapable of performing the specific tasks required of them,” stated CTO of Iris.ai, Victor Botev.You can try out a demo of NLLB-200.“Another point to note is that the validity of these measurements has yet to be scientifically proven and verified by their peers. The datasets for different languages are too small, as shown by the challenge in creating them in the first place, and the metric they’re using, BLEU, is not particularly applicable,” he added.You can try out a demo of NLLB-200 by visiting this link. “We’ve created a demo that uses the latest AI advancements from the No Language Left Behind project to translate books from their languages of origin such as Indonesian, Somali, and Burmese into more languages for readers – with hundreds available in the coming months. With this AI tool, families can now read stories together from around the world in a language that works for them,” Meta stated. Recently, we’ve covered that P-computers are the future for developing efficient AI and ML systems. These systems are also critical when it comes to creating efficient AI models.

EDU A.I. 的小學AI 暑期課程

WhatsApp 報名及查詢
真AI課程
策略性:可接軌至為心儀中學的課程
工具實用性:幫助孩子的學習
具有階梯性
趣味與學習兼備

AI機關槍製作班 

  • AI模型使用
  • 訓練AI模型
  • 機械零件組裝
  • 3D列印
  • 調試和故障排除
聖母書院、循道中學、天水圍官立中學佛教沈香林紀念中學透過我們為學生體驗同樣課程,顯示這課程將讓孩子可以及早學習中學的知識。
AI機關槍訓練孩子多種能力,且覆蓋計算機科學、機械工程、農業科技科目等,令孩子可以應用跨學科的知識。
分基礎班及進階班
這個機關槍具備自動追踪、發射、夜視等功能,讓學生實際感受科技的奇妙,成為「創意射手」,趣味十足!

城市任務隊長 UGOT AI機械人製作班

  • 視覺標籤識別
  • 第一人稱視角與應用程式同步
  • 行人/運動追蹤
  • 姿勢識別
  • 360°語音識別
  • 客製化培訓
  • 圖形/Python編程
  • 內置GPU與 ChatGPT配合使用
教育局的初中人工智能單元,包括語音識別、視覺標籤的課題,而且Python編程亦是教育局的的課程參考課題之一。
UGOT 是一個多功能且創新的教育機械人套件,具有先進GPU,讓孩子由小學至中學都可以利用它進行訓練,性價比十足。
課程安排上不需分班
UGOT機械人變化成七種形態,包括輪足機器人、麥輪車、平衡車、蜘蛛機器人、變形車、四腳狗機器人和工程車,及執行多種指令,趣味及學習兼備。

AI ChatGPT 機械人編程班

  • 認識機械人
  • 參與並製作機械人程式
  • 放置軟件進入智能機械人
  • 利用AI科技建立互動程式項目
我們為香港真光中學的120位中一生提供了同類的AI課程,並逾20名同學參與最後的STEM準比賽,制作聊天機器人,顯示這課程將讓孩子可以及早學習中學的知識。
AI ChatGPT 機械人編程班訓練孩子理解及正確利用現時灸手可熱的ChatGPT技術,對孩子學習及適應現代科技有莫大幫助。
分基礎班及進階班
學生將透過將自然語言處理系統(NLP)應用到 Alpha Mini 機械人上,這不僅是一堂課,更是一場實現機械人之間溝通的冒險,讓孩子們深入探索人工智能和機械人的關係。
真AI課程
策略性:可接軌至為心儀中學的課程
工具實用性:幫助孩子的學習
具有階梯性
趣味與學習兼備

AI機關槍製作班 

  • AI模型使用
  • 訓練AI模型
  • 機械零件組裝
  • 3D列印
  • 調試和故障排除
佛教沈香林紀念中學天水圍官立中學、循道中學、聖母書院透過我們為學生體驗同樣課程,顯示這課程將讓孩子可以及早學習中學的知識。
AI機關槍訓練孩子多種能力,且覆蓋計算機科學、機械工程、農業科技科目等,令孩子可以應用跨學科的知識。
分基礎班及進階班
這個機關槍具備自動追踪、發射、夜視等功能,讓學生實際感受科技的奇妙,成為「創意射手」,趣味十足!
真AI課程
策略性:可接軌至為心儀中學的課程
工具實用性:幫助孩子的學習
具有階梯性
趣味與學習兼備

城市任務隊長 UGOT AI機械人製作班

  • 視覺標籤識別
  • 第一人稱視角與應用程式同步
  • 行人/運動追蹤
  • 姿勢識別
  • 360°語音識別
  • 客製化培訓
  • 圖形/Python編程
  • 內置GPU與 ChatGPT配合使用
教育局的初中人工智能單元,包括語音識別、視覺標籤的課題,而且Python編程亦是教育局的的課程參考課題之一。
UGOT 是一個多功能且創新的教育機械人套件,具有先進GPU,讓孩子由小學至中學都可以利用它進行訓練,性價比十足。
課程安排上不需分班
UGOT機械人變化成七種形態,包括輪足機器人、麥輪車、平衡車、蜘蛛機器人、變形車、四腳狗機器人和工程車,及執行多種指令,趣味及學習兼備。
真AI課程
策略性:可接軌至為心儀中學的課程
工具實用性:幫助孩子的學習
具有階梯性
趣味與學習兼備

AI ChatGPT 機械人編程班

  • 認識機械人
  • 參與並製作機械人程式
  • 放置軟件進入智能機械人
  • 利用AI科技建立互動程式項目
我們為香港真光中學的120位中一生提供了同類的AI課程,並逾20名同學參與最後的STEM準比賽,制作聊天機器人,顯示這課程將讓孩子可以及早學習中學的知識。
AI ChatGPT 機械人編程班訓練孩子理解及正確利用現時灸手可熱的ChatGPT技術,對孩子學習及適應現代科技有莫大幫助。
分基礎班及進階班
學生將透過將自然語言處理系統(NLP)應用到 Alpha Mini 機械人上,這不僅是一堂課,更是一場實現機械人之間溝通的冒險,讓孩子們深入探索人工智能和機械人的關係。

更多EdTech資訊